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Abstract 
In many instances, yet-to-be-acquired military systems will, when deployed, operate 
alongside existing systems to provide a set of capabilities. The design requirements assigned 
to the yet-to-be-designed systems will impact the performance with which the resulting 
system of systems provides the desired capabilities. Identifying these design requirements for 
new, yet-to-be introduced systems is difficult, because quantifying the impact of these 
requirements on fleet level metrics must use some sort of analyses that recognizes the tight 
coupling of the system design problem (in this paper, a new aircraft design) and asset 
assignment problem (in this paper, aircraft fleet deployment to provide military cargo 
transportation). The methodology presented here addresses this by solving a combined 
platform design, fleet operations and acquisition-level decision-making problem wherein the 
design requirements of a new system (or systems) appear as design variables in an 
optimization problem formulation. The approach employs a decomposition strategy to 
describe the design requirements of the new, yet-to-be-acquired system so that the new 
system improves fleet-level performance. This fleet-level performance usually involves 
multiple, competing fleet-level objectives; the research investigates tradeoffs between 
objectives of fuel usage (cost) and fleet-wide productivity using a relatively simple example 
motivated by the USAF Air Mobility Command cargo carrying aircraft fleet. Solutions to the 
multi-objective optimization problem represent the best possible tradeoffs of these two 
objectives as functions of the new aircraft design requirements. Presenting these results as a 
Pareto frontier shows the relationship of fleet productivity to fuel cost; this has features of a 
“fuel cost as an independent variable” context for decision-making. From this, a decision-
maker might select a desired balance of fleet-level fuel cost and fleet productivity, thereby 
identifying the corresponding new aircraft design requirements. 

Introduction 

Nomenclature 

ARX  = aspect ratio of aircraft type X 

Bp = maximum average daily utilization of each aircraft (20 hours) 

BHp,k,i,j = number of block hour for kth trip of aircraft p from base i to base j 

Cp,k,i,j = cost coefficient for kth trip of aircraft p from base i to base j 

Capp,k,i,j = number of pallet carrying capacity for kth trip of aircraft p from base i 
to base j  

Demi,j = demand from base i to base j in number of pallets 
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DOC = direct operating cost 

MTM/D = million ton-miles per day 

Op,i = indicates if airport i is the initial location(e.g., home base) of an aircraft 
p 

PalletX = number of pallets carried by aircraft type X 

RangeX = design range of aircraft type X (nm) 

SpeedX = cruise speed of aircraft type X (knots) 

STO = take off field length 

(T/W)X = thrust-to-weight ratio of aircraft type X 

UTE = utilization rate 

(W/S)X = wing loading of aircraft type X, in lb/ft2 

xp,k,i,j = Boolean variable indicating if the kth trip if flown by aircraft p from 
base i to base j 

M = fleet-level DOC or fuel limit 

Research Issue 
The Energy Efficiency Starts with the Acquisition Process fact sheet (DUSD[AT&L], 

2012) states, “Neither current requirements or acquisition processes accurately explore 
tradeoff opportunities using fuel as an independent variable.” The fact sheet also states, 
“Current processes undervalue technologies with the potential to improve energy efficiency.” 
Studies conducted by the Institute for Defense Analyses, the Defense Science Board, 
Energy Security Task Force and JASON Defense Advisory Group have all alluded to the 
significant risk and operational constraints that energy efficiency issues pose on military 
operational flexibility (DUSD[AT&L], 2012). The consumption and transport of fuel across a 
combat theater, throughout the lifecycle of operational systems, poses significant 
operational risk, strategic vulnerability and increased monetary cost in supporting forward-
force assets. A significant portion of the Department of Defense’s fuel costs are attributed to 
aviation fuel, with the U.S. Air Force Air Mobility Command (AMC) being the largest single 
consumer.  

AMC’s mission profile mainly consists of worldwide cargo and passenger transport, 
air refueling and aeromedical evacuation. Platforms in operation include C-5 Galaxy and C-
17 Globemaster III for long range strategic missions, C-130 Hercules for tactical missions, 
KC-135 Stratotanker and KC-10 Extender for aerial refueling missions, and various VIP 
transport platforms including Air Force One. The logistics involved in cargo transportation 
across the AMC’s service network requires efficient deployment of cargo aircraft to meet 
delivery requirements. Aircraft are assigned to carry cargo on given routes while balancing 
the need for timely delivery with the goal of minimizing fuel consumption and related costs. 
The type of aircraft flown on each assigned route drives the fleet’s fuel use and cost; 
therefore, to reduce fuel use and cost, the process that allocates or assigns aircraft needs to 
consider fuel use and cost.  

The aforementioned energy efficiency reports allude to the lack of a framework that 
captures the effects that fuel saving measures (i.e., new technologies, systems) can have 
on fleet-wide performance metrics. This lack motivated the authors’ prior work that 
simultaneously considers the design of a new aircraft and the assignment of this new 
aircraft, along with existing aircraft to meet cargo carrying demand. This perspective of 
providing the fleet-level capability of cargo transport using a collection of aircraft, which are 
independent in their own right, has several features of a “system of systems” (Maier, 1998). 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 277 - 

The treatment of the new aircraft design requirements as governing decision 
variables, simultaneous consideration of aircraft design and fleet operations, and integration 
of the uncertainty nature of cargo demand, results in a stochastic mixed integer non-linear 
programming (MINLP) problem that is typically difficult, if not impossible to solve. However, 
the framework developed by the authors employs a decomposition strategy to address 
computational tractability and a naïve Monte Carlo sampling to address uncertainty. For 
some example problems, this approach has shown results with the potential to save fleet-
level costs by suggesting, perhaps non-intuitive, design requirements for the new aircraft.  

The research described in this paper demonstrates a framework that identifies 
optimal characteristics of new assets (here, aircraft) and investigation of trade-offs between 
fleet-level fuel usage and fleet productivity (as a measure of performance) as functions of 
the new aircraft requirements for an example problem motivated by the U.S. Air Force Air 
Mobility Command. The framework can examine how acquisition (or, perhaps, pre-
acquisition) decisions describing the requirements for a new aircraft might directly reduce 
fleet-level fuel usage or cost, considering the operational network and other existing assets 
along with the potential new (or modified) platform. Consideration of the aircraft design and 
fleet assignment problems simultaneously presents many decision variables—a condition 
where the size of the problem rapidly exceeds the mental capability of the designer and a 
computational approach becomes necessary. Additionally, explicit consideration of 
uncertainty in operations better informs a new aircraft that improves the fleet-level 
performance.  

Earlier work involving the authors (Choi et al., 2013) modeled individual aircraft trips 
within the context of a scheduling problem that explicitly account for flow balance 
constraints. Despite the computation complexity associated with solving scheduling 
problems, the “scheduling-like” formulation enables studies considering the time sensitive 
nature of the cargo transported in AMC operations. Cargo is tiered according to urgency of 
delivery, and thus poses implicit constraints on the routes traveled on (relating to the range 
of the aircraft used), and the capability (here, speed) of the aircraft. The optimization 
problem formulation describing the fleet operations incorporates “scheduling-like” features 
within the assignment problem to more closely represent recorded AMC operations. Fleet-
fuel and fleet-operating costs have provided the performance metrics for our previous work 
(Choi et al., 2013) where the objective function of the assignment problem seeks to 
minimize the total amount of fuel burned or the fleet operating cost, resulting from cargo-
carrying trips across the AMC network of operations. However, “fleet-productivity,” as 
referred to in prior studies (Tetzloff & Crossley, 2011) is a metric that combines speed and 
weight of cargo transported into a single metric that serves as the problem objective.  

The work presented here demonstrates the ability to consider tradeoffs with fleet-
level fuel consumption as one of the quantities of interest. The set of Pareto-optimal 
solutions obtained from the multi-objective analyses will allow acquisition decision makers to 
quantitatively determine the tradeoffs in fleet-level performance and fuel consumption, both 
of which are functions of design requirements assigned to the new platform. 

Scope and Method of Approach 
As suggested above, a desired approach for this study would maximize or minimize 

a fleet-level objective function by searching for a set of decision variables that describe the 
new system design and describe the assignment of the new and existing systems to perform 
operational missions. While a single, monolithic problem statement can reflect this kind of 
problem, solving the resulting mixed integer non-linear programming (MINLP) problem is 
difficult, if not impossible (Mane et al., 2007).  
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The decomposition strategy with a scheduling-like formulation under uncertainty, as 
notionally depicted in Figure 1, breaks down the computational complexity of the decision 
space into a series of smaller sub-problems controlled by a top-level optimization problem. 
The decomposition approach addresses the issue of tractability of solving a monolithic, 
mixed discrete non-linear programming problem and has yielded better “design solutions” 
across a set of aviation applications including commercial airlines, fractional management 
companies and air taxi services (Mane et al., 2006, 2007, 2012). The motivation of these 
prior works in identifying cost and fuel saving characteristics of a new, yet-to-be-acquired 
aircraft bears great similarity to the U.S. Air Force Air Mobility Command (AMC) problem. 
This paper presents a process that allows investigation of trade-offs between fleet-level fuel 
usage, performance metrics and acquisition alternatives for a conceptual problem that 
resembles missions of the AMC. 

 

 Decomposition Strategy for the Monolithic Optimization Problem 

The research presented here extends the prior work (Choi et al., 2013) to 
encompass investigating tradeoffs between objectives of productivity/mission effectiveness 
and energy consumption. These two competing objectives often play a critical role in 
determining new system design requirements. Fleet productivity is a metric that combines 
speed of delivery and weight of cargo transported. Under the multi-objective formulation, an 
epsilon constraint approach addresses the two objectives—maximizing productivity and 
minimizing fuel consumed (or operating costs). Maximizing productivity subject to different 
fuel cost limits (enforced as constraints), and minimizing fuel as cost under different 
productivity constraints will lead to a Pareto frontier of optimal solutions representing the 
best possible tradeoffs between the two objectives. Payload capacity, design cruise speed, 
and range are common aircraft design requirements and serve as the top- or system-level 
variables. 

To develop the example problem with relevance to Air Mobility Command, the Global 
Air Transportation Execution System (GATES) dataset provides historical route and cargo 
demand data. GATES contains very detailed information on palletized cargo and personnel 
transported by the AMC fleet. Cargo transported by the strategic fleet consisting of C-5 and 
C-17 aircraft, and chartered Boeing 747 Freighter (747-F) aircraft from the Civil Reserve Air 
Fleet (CRAF) for long range missions, are considered as a representative measure of typical 
cargo flow on the AMC service network. Each data entry in “GATES Pallet data” represents 
cargo on a pallet or a pallet-train that was transported. Each pallet data entry has detailed 
information of the pallet, such as pallet gross weight, departure date and time, arrival date 
and time, mission distribution system (MDS), tail number, aerial port of embarkation (APOE), 
aerial port of debarkation (APOD), pallet volume, pallet configuration, and so forth. These 
data enable the reconstruction of the route network, pallet demand characteristics and 
existing fleet size for our assignment problem  
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In this paper, the following assumptions are made on operations of the fleet, based 
on the available dataset: 

1. The filtered route network from GATES dataset is representative of all AMC 
cargo operations. 

a. Demand for subset served by C-5, C-17 and 747-F (75% of all pallets 
in GATES dataset) 

b. Fixed density and dimension of pallet, representing the 463L pallet 
type 

2. Aircraft fleet consists of only the C-5, C-17 and 747-F. The model is 
indifferent to variants of these aircraft types. 

Monolithic Problem Formulation  

The system-of-system level representation involves the combination of resource 
assignment (under uncertainty) and aircraft design perspectives that make up the monolithic 
problem. The resource assignment problem under uncertainty translates to a stochastic 
integer programming and the aircraft design problem is a non-linear programming problem. 
The combination of both problems results in a stochastic mixed integer non-linear 
programming problem. The resulting optimization problem is represented by the following 
equations:  

Maximize 

E
x

p,k ,i, j
 Speed

p,k ,i, j
Pallet

p,k ,i, j 
j1

N
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N
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k1

K


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P
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X
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
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14 38XPallet    (Design pallet capacity bounds)   (8) 

2400 3800XRange   (Range at max. payload bounds)   (9) 

350 550 XSpeed   (Cruise speed bounds in knots)   (10) 

 6.0 9.5
X

AR  (Wing aspect ratio bounds)   (11) 

 65 161
X

W S    (Wing loading bounds)   (12) 

 0.18 0.35 
X

T W  (Thrust-to-weight ratio bounds)   (13) 

 , , , 0,1pk i jx     (Binary variable)   (14) 

     , ,
X X X

AR W S T W  (Continuous aircraft design variables)   (15) 

Pallet
X

,Speed
X
 (Discrete aircraft design variables)   (16) 

Equation 1 is the objective function that seeks to maximize the expected fleet-level 
productivity where ܵ݀݁݁݌௣,௞,௜,௝	ݐ݈݈݁ܽܲ ݔ௣,௞,௜,௝ indicates the productivity coefficient of the trip for 
݇th trip for aircraft ݌ from base ݅ to base ݆. Equation 2 limits the fleet-level fuel consumption 
or cost to a pre-defined limit; the limit is varied and the problem is re-solved for each varied 
value of limit to generate a set of Pareto-optimal solutions. The constraint Equation 3 is the 
balance and sequencing constraint that ensures that the ሺ݇ ൅ 1ሻth trip of an aircraft out of a 
base occurs only after ݇th trip into that base—this constraint ensures that an aircraft needs 
to already be at a base prior to completing a subsequent segment trip out of the same base. 
Equation 4 limits flights to only occur within daily utilization limit (assumption of 20 hours) of 
the aircraft where ܪܤ௣,௞,௜,௝indicates the block hour for the ݇th trip for aircraft ݌ from base ݅ to 
base ݆. Equation 5 ensures that carrying capacity of combined trip meets the demand where 
௣,௞,௜,௝݌ܽܥ indicates the pallet carrying capacity of the ݇th trip for aircraft ݌ from base ݅ to base 
݆. Equation 6 ensures that the first trip of each aircraft originates at the initial location (home 
base) which is randomly generated. The non-availability of the aircraft starting location 
information in the Gates dataset necessitates the random distribution of the starting location 
of each aircraft. Equation 7 limits the aircraft design based on maximum takeoff distance to 
ensure that the new aircraft can operate at bases in the network. Equations 8–10 describe 
bounds on the aircraft design variables of payload, design range (in nautical miles) at 
maximum payload and cruise speed (in knots) capabilities of the new aircraft. The chosen 
limits are within ranges exhibited by current military cargo aircraft. The continuous aircraft 
design variables of aspect ratio ሺܴܣሻ௫, thrust-to-weight ratioሺܶ/ܹሻ௫	 and wing loading 
ሺܹ/ܵሻ௫ (in lb/ft2), describing the new aircraft are bounded within the range of values 
associated with current cargo aircraft; the bounds appear in Equations 11–13. Solving the 
aircraft design sub problem provides a solution that describes the features of the new 
aircraft with the lowest DOC (fuel cost) for the specified design range. The productivity and 
cost coefficients of the new aircraft for the various routes in the network are then estimated. 

Subspace Decomposition Strategy  

The subspace decomposition strategy, as shown in Figure 1, decomposes the 
MINLP problem into smaller optimization problems—each sub problem follows the natural 
boundaries of disciplines involved in formulating the original problem. The top-level problem 
helps explore the requirements space for the new yet-to-be introduced aircraft based on 
fleet-level metrics. In this research, top-level optimization problem is tackled using quasi-
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enumeration and seeks to maximize the expected fleet-level productivity using pallet 
capacity, range and cruise speed of the new, yet-to-be introduced aircraft type X. 

 

 Subspace Decomposition of Monolithic Optimization Problem With Monte 
Carlo Sampling 

The resulting pallet capacity (Palletx), design range (Rangex) and cruise speed 
(Speedx) from the top-level problem then become inputs to the aircraft sizing problem. Here, 
the aircraft sizing problem seeks to minimize the direct operating cost of the new yet-to-be 
introduced aircraft for the value of range, pallet capacity and cruise speed from the top-level 
optimization problem. The aircraft design problem is also subject to constraints on take-off 
distance. The design variables are the main drivers of aircraft design, namely the aspect 
ratio ሺܴܣሻ௫, thrust-to-weight ratio ሺܶ/ܹሻ௫, and wing loading ሺܹ/ܵሻ௫. The outputs of the 
aircraft sizing problem and top-level optimization problem, namely the productivity coefficient 
and cost of operating the yet-to-be introduced aircraft X on individual routes, and pallet 
capacity, are then used as inputs in the aircraft assignment problem. Here, the objective is 
to maximize the fleet-level productivity using characteristics of the yet-to-be introduced 
aircraft (cost, pallet capacity, speed), subject to capacity, fleet-level cost and aircraft trip 
limits.  

Aircraft Sizing Subspace 

The problem formulation requires estimates of the cost, block time, and fuel 
consumed by each aircraft type in the fleet to determine the appropriate assignment of 
aircraft to the various routes in the network. A Purdue in-house aircraft sizing code, written in 
MATLAB, provides these estimates in the aircraft sizing subspace shown in Figure 2. Jane’s 
Aircraft database (Jackson, 2004) provided the input parameters for the three existing 
aircraft types (C-5, C-17, 747-F) used in this study. The MATLAB sizing code’s predictions 
of the existing aircraft size, weight and performance have been validated with published 
data. 

DOC estimates include fuel costs, crew costs, maintenance, depreciation and 
insurance. DOC estimates are also dependent on the payload, route distance, empty 
weight, landing weight and takeoff gross weight. Figure 3 shows a typical mission profile 
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used for the aircraft sizing and operating missions. To estimate the fuel weight necessary for 
flying the route distance, the fuel required for each mission segment is computed and 
aggregated. The fuel weight fractions for the different mission segments such as warm-up 
and take-off, climb, landing and taxi, and reserves are based on empirical data (Raymer, 
2006). The Breguet range and endurance equations predict the fuel weight fractions for the 
cruise and loiter mission segments. The descent segment uses a no-range credit 
assumption. The reserve fuel fraction is assumed to be 6%, which also accounts for a small 
amount of trapped and unusable fuel. 

 

 Mission Flight Profile 

The payload-range curves for the existing aircraft fleet, depicted in Figure 4, indicate 
the maximum payload carrying capacity of the aircraft as a function of the distance flown by 
the aircraft. The payload-range curves for the existing fleet are constructed by using 
piecewise linear interpolation between specified points from published charts (Baker, 2002). 

 

 Payload Range Curves for Existing Fleet 

The aircraft design variables are aspect ratioሺܴܣሻ௫, thrust-to-weight ratio ሺܶ/ܹሻ௫	and 
wing loadingሺܹ/ܵሻ௫. There are many other design variables, but these three have 
significant impact on the size, weight, and performance of the aircraft. The aircraft sizing 
problem is a nonlinear programming (NLP) problem and is described using Equations 17–
24. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 283 - 

Minimize    f  (DOCpallet ,range,speed )X     (17) 

Subject to 

STO PalletX ,SpeedX , AR 
X

, W S 
X

, T W 
X   D   (Aircraft takeoff distance)   (18) 

14 38XPallet    (Design pallet capacity bounds)   (19) 

2400 3800XRange   (Range at max. payload bounds)   (20) 

350  Speed
X
 550   (Cruise speed bounds)   (21) 

 6.0 9.5
X

AR  (Wing aspect ratio bounds)   (22) 

 65 161
X

W S    (Wing loading bounds)   (23) 

 0.18 0.35 
X

T W  (Thrust-to-weight ratio bounds)   (24) 

Equation 17 is the objective function that seeks to minimize DOC or fuel cost of the 
new aircraft X. The aircraft X design input variables are pallet carrying capacity of the 
aircraft, design maximum range at maximum loading condition, and cruise speed as 
described in Equations 19–21; these echo Equations 8–10 above. Equation 18 limits the 
aircraft design based on maximum takeoff distance to ensure that the new aircraft can 
operate at bases in the network within the bounds of modern day cargo aircraft descriptions 
shown in Equations 22–24.  

Scheduling-Like AMC Assignment Subspace 

Determination of Number Of New Aircraft 

The number of new aircraft X to be introduced to existing fleet is unknown as 
capacity of the new aircraft is also unknown. However, the AMC strategic fleet is expected to 
be capable of servicing the maximum possible demand scenario, by requirement. Mobility 
Capabilities and Requirement Study (MCRS) 2016 (Jackson, 2009) illustrates three different 
scenarios which capacity of the strategic fleet must always meet. The peak for MCRS Case 
1, which represents the highest level of modeled strategic airlift demand, required 32.7 
million ton-miles per day (MTM/D). MTM/D values for each type of aircraft are calculated 
using empirical data. A C-5 carries 0.1209 MTM/D, while the newer C-17 carries 0.1245 
MTM/D (Kopp, 2004).The 747-F carries 0.1705 but is not included in calculating the 
strategic airlift fleet MTM/D as the Civil Reserve Air Fleet (CRAF) is not operated by AMC. 
Hence, it does not affect the number of aircraft X required to meet the peak demand.  

MTM/D of the new aircraft X is calculated using following equation. 

ெ்ெ

஽
ൌ 	஻௟௢௖௞ௌ௣௘௘ௗ	x	஺௩௚.௉௔௬௟௢௔ௗ	x	UTE	Rate	x	Productivity	Factor

ଵ,଴଴଴,଴଴଴
   (25) 

AMC force structure programmers use MTM/D when funding out-year aircraft 
purchases and many civilian agencies are accustomed to visualizing our fleet capability in 
terms of MTM/D. Utilization rate (UTE rate) of the new aircraft is assumed to be 12 hr/day 
and productivity factor of 4.8 is assumed for new aircraft, which is within the typical range of 
the strategic airlift fleet average value. However, the simple three-base problem is set such 
that only three new aircraft are introduced to the new fleet, as MTM/D calculation is not 
applicable for smaller route networks. 
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Assignment Problem Formulation 

The monolithic optimization problem simultaneously considers the aircraft design and 
assignment (schedule-like) of the fleet’s aircraft to meet demand obligations shown as AMC 
assignment subspace in Figure 2. The formulation considers inherent asymmetric demand 
nature (Choi et al., 2013) of the AMC network, and is given by the following equations. 

Maximize 

E x
p,k ,i, j

 Speed
p,k ,i, j

Pallet
p,k ,i, j 

j1

N


i1

N


k1

K


p1

P










  (Productivity = Speed x Capacity)   (26) 

Subject to 

xp,k ,i, j Cp,k ,i, j
j1

N


i1

N


k1

K


p1

P

  M    (Fleet-level DOC or fuel limits)  (27) 

, , , , 1, ,
1 1

1, 2, 3... ,

1, 2, 3... , 1, 2, 3...

N N

p k i j p k i j
i i

x x k K

p P j N


 

  

   

    (Node balance constraints)   (28) 

, , , , , ,
1 1 1

1,2,3...
K N N

p k i j p k i j P
k i j

x BH B p P
  

      (Trip constraints)   (29) 

, , , , , , ,
1 1

1, 2,3...

1, 2,3...

P K

p k i j p k i j i j
p k

Cap x dem i N

j N

 

   

 

  (Demand constraint)   (30) 

xp ,1,i,k Op,i
i1

N

 p  1,2,3...P,i  1,2,3...N  (Starting location constraints)   (31) 

 , , , 0,1p k i jx     (Binary variable)  (32) 

The aforementioned formulation is designed to adapt to the AMC fleet network, 
which is asymmetric in nature and is more reflective of actual AMC operations. Equation 26 
describes of the objective of maximizing the fleet-level productivity, subject to cost limit, 
node balance, trip, demand and aircraft starting location constraints described in Equations 
27–31; these echo Equations 1–6 of the monolithic problem formulation. The scheduling-like 
formulation used in the problem is a surrogate for cost and operation model, and it does not 
consider aircraft or pilot scheduling. However, the aircraft in the fleet are not required to 
return to their home base at the end of the day a round trip assumption is removed, and may 
continue servicing different routes. The Generic Algebraic Modeling System (GAMS) 
software package, accessed through a MATLAB interface is used to solve the assignment 
problem, using the CPLEX solver option (Ferris, 1998). The scheduling-like formulation 
using node balance constraints, more accurately models AMC operations, allowing for 
directional pallet cargo and tracking of aircraft tail numbers.  

Monte Carlo Sampling Technique 

The cost of operating a fleet is subject to the trip demand characteristics—a quantity 
that is typically uncertain. While passenger demand between origin-destination pairs is fairly 
constant for commercial or passenger airline route networks, the same cannot be said for 
AMC operations, which typically experiences high levels of uncertainty in demanded trips 
and cargo size (Choi et al., 2013). The GATES dataset reveals the variation in pallet 
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demand (number of pallets transported on a route) over a year reflecting the uncertainty 
associated with pallet demand in AMC operations. Thus, it becomes imperative for any 
systems designer/planner, to consider the uncertainty in the network as part of the decision-
making framework. Figure 5 shows the severity of fluctuation of the pallets transported daily 
between two popular bases in the GATES dataset. Figure 6, showing the histogram of the 
number of pallets transported per aircraft per day reveals that many of the days, aircraft are 
very lightly loaded. We address the issue of uncertainty through a Monte Carlo Sampling 
(MCS) approach from literature (Mane, 2012). The MCS technique solves an assignment 
problem for each simulated demand instance that is sampled from historical demand data 
distribution. MCS is a very simplistic, easy to implement and naïve approach. Generating 
high fidelity statistical correlations from the sampling would require large sample sizes, and 
hence, increased computational expense. The MCS technique can prove to be 
computationally expensive with increasing sample sizes, due to the computational 
complexity of solving an integer program for each realized sample of demand and starting 
location for each aircraft in the fleet. An assumption is made where the calculated fleet size 
of new aircraft entering into service, has feasible assignments for all realizations of demand 
instances sampled from distributions. The expected fleet performance metrics are then 
averaged across the entire solved sample instance assignments of demand. 

 

 Distribution of Number of Pallets Transported by Date on a Sample Route 
From GATES Dataset 
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 Histogram of Number of Pallets Transported Daily on a Sample Route From 
GATES Dataset 

Three-Base Network Problem 

A. Network Description 

A simple, illustrative “baseline” problem for AMC operations, consisting of six 
directional routes between three bases is devised as an initial study. The motivation here is 
to illustrate the application of the subspace decomposition method, for the simple case of 
introducing a yet-to-be-designed aircraft to improve fleet-level metrics. The airbase locations 
and the route data is extracted from the GATES dataset. Figure 7 depicts the average daily 
pallet demand on these routes and the route distances of the network. The three bases in 
the network are ETAR, KDOV, and OKBK, which are the most flown routes in the GATES 
dataset for March 2006. The shortest distances between the routes are calculated using 
ICAO coordinate system. The intent is to assign aircraft to the three routes to satisfy the 
network cargo demand. 
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 Schematic of Three-Base Network Problem 

Three-Base Network Results 

The actual size of the strategic airlift fleet dedicated to cargo transport is obtained 
from the GATES dataset by accumulating unique tail numbers resulting in a fleet 
composition of 92 C-5s, 145 C-17s and 69 747-Fs. The reduced exisiting fleet size for the 
three-base network problem consists of three of each aircraft type: type A representing the 
C-5s, type B aircraft representing the C-17s, and type C aircraft representing the 747-Fs, 
which is assumed to be operated as a chartered aircraft. Three of the new aircraft (aircraft 
type X) are introduced to the fleet. The new aircraft in addition to the existing fleet serve to 
satisfy the pallet cargo demand on various routes subject to the scheduling constraints.  

The subspace decomposition strategy as depicted in Figure 2, is them employed, 
using pallet capacity, range at maximum payload, and cruise speed as the top-level design 
variables of the new aircraft X. The new aircraft X is optimized for minimum direct operating 
cost with the values for the top-level design variables as input parameters. The fleet 
assignment subspace then assigns the aircraft to the various routes to maximize productivity 
or minimize operating costs for the different sampled instances of demand. To address 
uncertainty, a MCS approach is used where the uncertainty in pallet demand is sampled 
from the historical distributions for each route. The intent is to obtain an aircraft description 
that is more robust to the uncertain demand network characterized by fluctuations as shown 
before in Figures 5 and 6. When sampling the demand, the MCS technique is set to 
calculate the probability of the number of pallets carried on an airplane on each route. Then 
a random number generated between 0 and 1 will select number of pallets carried on a 
route based on the probabilistic distribution. This process constructs a demand structure 
that is representative of the historical demand distributions for each route. The sequential 
subspace decomposition approach is solved sequentially until the top-level converges. 
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 Pareto Front of Normalized Expected Fleet Productivity Versus Normalized 
Expected Fleet Costs for Three-Base Network Problem 

Figure 8 depicts the Pareto front obtained from solving the multi-objective formulation 
using an epsilon constraint approach for the three-base network problem. The fleet 
productivity and cost values shown in Figure 8 have been normalized with respect to their 
respective minimum productivity and cost values. The Pareto front provides a quantitative 
measure of how the design of the new system varies, as a particularly objective is traded off 
with another objective. For instance, the optimal design of the new aircraft suggests a 
relatively smaller aircraft with a pallet capacity of 14, a high wing loading and thrust-to-
weight ratio for a normalized expected fleet productivity and costs value of 1. Increasing the 
normalized fleet productivity by a factor of 2.15 increases the fleet costs by a factor of 1.7. 
However, the optimal design of the new aircraft required to achieve this also differs 
considerably. In this scenario, the optimal design of the new aircraft suggests a larger 
aircraft capable of carrying 24 pallets with a relatively lower thrust-to-weight ratio and wing 
loading. The general trend of the Pareto front is as expected, with fleet productivity 
increasing with increase in fleet costs. 
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 Trends of the Optimal Values of the Aircraft Design Variables Along Pareto 
Front 

The optimal values of the design variables of the new aircraft X, as shown in Figure 
9, illustrate some discernible trends. The pallet capacity of the new aircraft X increases with 
increase in fleet productivity, as pallet capacity is one of the main drivers for fleet 
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productivity. The optimal cruise speed always reaches the upper bound of 550 knots. Faster 
cruise speeds offer increased productivity at the expense of increased system cost. 
However, for the three-base network, the increase in fleet-level costs is not limiting on the 
improved fleet-level productivity offered by a faster cruise speed. The relatively low demand 
in the network in comparison to the pallet capacity of the fleet causes the optimal design 
range of the new aircraft X to reach the lower bound of 2400 nm. The optimal design range 
increases to higher values when the sampled demand values are larger, thus enabling the 
fleet to more efficiently satisfy the demand in the network for those sampled demand 
instances. The optimal wing loading and the thrust-to-weight ratio show similar trends; these 
values are dictated by the single takeoff performance constraint. The optimal aspect ratio 
decreases with increase in fleet productivity and fleet costs. Higher aspect ratio leads to 
reduced fuel costs thus enabling the fleet to maximize productivity at lower fleet cost limits. 
The decrease in fuel costs owing to reduced drag in a higher aspect ratio configuration 
offsets the increase in fuel costs owing to increase in empty weight of the aircraft. 

Conclusions and Future Work 
The decomposition framework, adopted in this paper, presents a process that allows 

the identification of optimal design parameters of a military transport aircraft when trade-offs 
between fleet-level fuel usage, performance metrics and acquisition alternatives for a 
conceptual problem are considered under demand uncertainty in the route network. 
Although the method has been demonstrated for a very simple example motivated by Air 
Mobility Command, the method appears generalizable to acquisitions for other new 
platforms that are intended to work with other existing platforms to provide a set of 
overarching capabilities. The decomposition framework enabled the identification of a set of 
Pareto-optimal designs of the new yet-to-be introduced aircraft for two competing fleet-level 
performance metrics under uncertainty. The framework identifies the optimal design 
requirements of the new system, and the optimal utilization of the new system together with 
existing systems in the fleet. The new systems designed accounting for uncertainty in 
operations leads to optimal fleet utilization and consistent reliability levels. 

The three-base problem provides a simplified example network to illustrate the 
decomposition approach and demonstrates its ability to generate plausible solutions. Given 
the modeling assumptions and assessment of the uncertainties in the model parameters, 
the subspace decomposition approach identified the optimal design requirement of the new 
aircraft for a set of fleet-level objective(s) for the three-base network problem. Figure 10 
depicts the spread of the normalized objective function values for the three-base network 
problem, solved via the epsilon constraint multi-objective formulation for different demand 
samples. The authors would like to further investigate the possibility of any statistic 
correlations between the degree of dispersion due to the uncertainty in demand and the 
fleet-level objective tradeoff design space. The degree of dispersion can be correlated to the 
robustness of the new system in achieving a set of pre-determined fleet-level objective(s), 
accounting for the uncertainty in fleet operations. These correlations could identify new 
system design requirements that would provide fleet-level performances within specific 
threshold bands (e.g., between the 25th and 75th quartile fleet-level productivity for a pre-
defined cost limit).  
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 Spread of Objective Function Values for Different Constraint Limits 

Future work will reflect a larger network from the GATES dataset (20+ bases) to 
investigate the ability of the subspace decomposition approach to solve larger, more 
interconnected networked systems. Recognizing the uncertainties in the cargo demand 
structure of the AMC fleet led the research to consider uncertainty via a comparatively naïve 
Monte Carlo Sampling technique. Multi-point design optimization techniques and control 
variate methods may be better suited for solving larger size problems, as computational cost 
associated with MCS grows exponentially with problem size. Future efforts will focus on 
reducing the computational cost associated with sampling the demand uncertainty in the 
network. 
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Overview

• Assist decision maker/acquisition practitioner with a decision support 
framework

– Determine requirements for – and suggest design of – a new system that will optimize 
fleet‐level objectives

• Motivated by a lack of processes to capture effects of fuel‐saving 
measures on fleet‐level performance metrics

• Address  combined platform design (here, aircraft) and fleet operations 
problem

– Fleet‐level objectives are functions of new platform requirements

• Used the approach to generate tradeoffs between fleet productivity and 
cost

– Use simple network extracted from Air Mobility Command operations
– Representation of demand constraint
– New aircraft design requirements change across range of best tradeoff solutions
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MOTIVATION
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Motivation

• Current requirements or acquisition processes do not accurately explore tradeoff 
opportunities for fleet‐level fuel (cost) and performance*.

• Lack of a framework that captures the effect that fuel‐saving measures can have 
on fleet‐level performance metrics*.

• Fleet‐level energy efficiency poses significant risks and operational constraints on 
military operational flexibility**

• Determining design requirements of ‘yet‐to‐be‐designed’ systems is difficult
– Tightly coupled nature of the system design problem with the resource assignment problem
– Non‐deterministic nature of AMC operations

• Demand is highly asymmetric
• Demand fluctuation on a day to day basis
• Routes flown vary based on demand

4

*Energy Efficiency starts with the acquisition process
http://www.acq.osd.mil/asda/docs/fact_sheets/energy_efficiency_starts_with_the_acquisition_process.pdf
**Saving fuel secures the future – one gallon at a time. Inside AMC
http://www.amc.af.mil/news/story.asp?id=123292555



Air Mobility Command

• Air Mobility Command (AMC) ‐ One of 
the major command centers of the U.S. 
Air Force

• AMC is the largest consumer of aviation 
fuel in the Department of Defense

– AMC Operations
• Uncertainty in cargo demand
• Limited aircraft types

• AMC’s mission profile includes
– Worldwide cargo and passenger transport
– Air refueling 
– Aeromedical evacuations

5
Source: www.amc.af.mil

*Our work only addresses cargo transport
B747‐f chartered from Civil Reserve Air Fleet



How can our approach help?

• Our methodology
– Helps determine the requirements for – and 
describe the design of – a new aircraft for use in 
the AMC fleet

– Optimize fleet‐level metrics that address 
performance and fuel use

• Describe how design requirements of the new 
aircraft would change for different tradeoff 
opportunities between productivity and cost

6



SCOPE AND METHOD OF 
APPROACH
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• Consider this as an optimization problem
– Objectives

• Fleet Productivity (speed of payload delivery)
• Fleet Operating cost (strongly driven by fuel use)

– Variables
• New aircraft  requirements
• New aircraft design variables
• Assignment variables

– Constraints
• Cargo demand
• Aircraft performance

8

Scope and Method of Approach



Scope and Method of Approach

9

Stochastic 
Mixed Integer 
Nonlinear 

Programming 
Problem

Design Uncertain 
Operations

Monolithic 
Formulation

Subspace 
Decomposition



• Subspace Decomposition approach
– Breaks down the computational complexity 
– Solve a series of smaller sub‐problems 

• Controlled by a top level optimization problem

• Addresses the issue of tractability of solving a 
monolithic, stochastic mixed integer nonlinear 
programming (MINLP) problem

10

Scope and Method of Approach



Subspace Decomposition 
Approach

Top Level

maximize:       Productivity

variable: PalletX, RangeX, SpeedX

Aircraft Sizing Subspace

minimize:  DOC on route (RangeX)

subject to: takeoff distance

variables: ARX, (T/W)X, (W/S)X, 

PalletX

RangeX

SpeedX

cpkij

Productivity

AMC Assignment Subspace

maximize: productivity

subject to: pallet capacity,
scheduling constraints,

fuel/cost limits

variables: xpkij

PalletX

11



Multi‐Objective Formulation

• Two objectives
– Maximize fleet‐level productivity
– Minimize fleet‐level cost

• Epsilon (Gaming) constraint formulation 
– Converts multi‐objective to single objective 
– Identify a primary objective
– Place limits on other objectives (inequality constraints)

Maximize       fp (x)

Subject  to      fl (x)   l      l  1... nobj (l  p)

                      g j (x)  0

                      h k (x)  0

12
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Top Level Subspace

13

 Productivity

14  PalletX  38

2400 3800XRange 

350  SpeedX  550 

Maximize

Subject to Pallet Capacity Bounds

Range at maximum payload 
bounds (nm)

Cruise speed bounds (knots)

• Pallet capacity, Range  and Speed bounds are set by strategic air lift 
aircraft description

• Bounds for aircraft design variables similar to current military cargo 
aircraft

Productivity = Speed x Capacity



Aircraft Sizing Subspace

14

f  (DOCpallet ,range,speed )X

      , , ,TO X X X X
S Pallet AR W S T W D

 6.0 9.5
X

AR 

 65 161
X

W S 

 0.18 0.35 
X

T W

Minimize

Subject to

Direct Operating Cost

Wing loading bounds (lb/ft2)

Thrust‐to‐weight ratio bounds

Aircraft takeoff distance

Wing aspect ratio bounds

• Bounds for aircraft design variables similar to current military cargo 
aircraft



Fleet Assignment Subspace
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Maximize

Subject to

Productivity = Speed x Capacity

Fleet‐level DOC or fuel limits

Node balance constraints

Demand constraints

Starting location of aircraft 
constraints

Trip constraints

Binary Variable



Pallet Cargo Demand

• High levels of uncertainty in cargo demand
• Addressed using Monte Carlo sampling methods

– Repeated deterministic calculations for statistical distribution of input 
parameters

16



Subspace Decomposition 
Approach

Top Level

maximize:       E(productivity)

variable: PalletX, RangeX, SpeedX

Monte Carlo Simulation

E(productivity) =  

Aircraft Sizing Subspace

minimize:  DOC on route (RangeX)

subject to: takeoff distance

variables: ARX, (T/W)X, (W/S)X, 

PalletX

RangeX

SpeedX

cpkij

E(productivity)

AMC Assignment Subspace

maximize: productivity

subject to: pallet capacity,
scheduling constraints,

fuel/cost limits

variables: xpkij

productivityi
*

N

‘N’ samples

PalletX

17



SCENARIOS & STUDIES
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Three-base Problem

• Filtered route network from GATES 
dataset

– Demand for subset served by C‐5, C‐17 and 
747‐F (~75% of total demand)

• Simple three‐base problem consisting 
of 6 directional routes

– Extracted from the GATES dataset 
– Most flown routes in March 2006

• Existing fleet for AMC
– Three C‐5: 36 pallet capacity 
– Three C‐17: 18 pallet capacity 
– Three B747‐F: 29 pallet capacity 

• 3 new aircraft X are introduced to the 
existing baseline fleet

OKBK 

KDOV ETAR 

13 PLT 9 PLT 

28 PLT 3 PLT 

31 PLT 

13 PLT 

5623 nm 2193 nm 

3438 nm 



Results

20

New Aircraft X:
Pallet capacity    = 14 
Design range      = 3000 nm
Cruise speed      = 550 knots
AR  = 7.04
T/W  = 0.3
W/S  = 150 lb/ft2

New Aircraft X:
Pallet capacity   = 24 
Design range     = 2600 nm
Cruise speed     = 550 knots
AR  = 6.6
T/W  = 0.28
W/S  = 139.26 lb/ft2

New Aircraft X:
Pallet capacity   = 38 
Design range     = 2400 nm
Cruise speed     = 550 knots
AR  = 6.3
T/W  = 0.26
W/S  = 130.72 lb/ft2



Results

• Optimum pallet capacity varies based on fleet‐level productivity /DOC 
values

– Pallet capacity increases with fleet‐level productivity
• Optimum design range  varies between 2400 nm to 3200 nm

– Design range increases when sampled demand instances are higher than average

21



CONCLUSIONS
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Summary/Conclusions

• Developed a framework that identifies the 
tradeoffs between fleet‐level cost and 
productivity
– Each tradeoff solution describes the design 
requirements, and design variables for the new 
aircraft

– Uncertainty in demand addressed using Monte Carlo 
sampling techniques

• Demonstrates the viability and applicability of the 
subspace decomposition framework 
– Assist acquisition practitioners 

23



Future Work

• Demonstrate the decomposition framework for a 
larger, i.e. realistic network

• Aircraft sizing accounts for outsized/oversized cargo 
• Reduce computational cost associated with sampling 
demand uncertainty

• Generalize to other systems

24



Questions?
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BACKUP SLIDES
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Asymmetric Demand

• Prior work assumed symmetric demand*
• Developed metric calculates the asymmetry in demand between 

bases

• Calculates demand asymmetry between origin‐destination pairs
• The AMC network reconstructed from the 2006 GATES dataset 

shows 65.15% demand asymmetry
• Symmetric demand assumption is not suited for AMC operations

27

, ,

1 1 , ,

Demand asymmetry = 100
max( , )

N N
O D D O

O D O D D O

Demand Demand

Demand Demand 




*Choi, J., Govindaraju, P., Davendralingam, N., & Crossley, W. (2013). Platform Design for Fleet‐Level Efficiency: 
Application for Air Mobility Command (AMC). In 10th Annual Acquisition Research Symposium.



Air Mobility Command

• Used Global Air 
Transportation Execution 
System (GATES) dataset 

• Filtered route network from 
GATES dataset
– Demand for subset served 

by C‐5, C‐17 and 747‐F 
(~75% of total demand)

– Fixed density and dimension 
of pallet (463 L)

• Our aircraft fleet consists of 
only the C‐5, C‐17 and 747‐F. 
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Source: www.amc.af.mil


